
EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

From tests to proofs II
Why do we trust programs?

CS-214 - 09 Oct 2024
Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

Unguided callback ideas & rules
are up!

Thanks for answering our poll!
We’ll follow up very soon.

Retour indicatif
is now available! More polls!

My inaugural lecture
is on Nov 19! Sign up here.

https://go.epfl.ch/sk-cpc

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Last week

Debugging II
Tests

Debugging “in the small”

Demo: instrumentation

Testing to avoid bugs

○ Acceptance tests

○ System tests

○ Integration tests

○ Unit tests

○ Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap: Testing a theater play

Let’s assume you’re preparing a theater play.
1. You rehearse your monologue in front of the mirror

⇒ Unit test

2. You rehearse a scene in a classroom with the other actor

⇒ Integration test

3. You complete a full rehearsal in the actual theater

⇒ System test

4. You perform at the premiere

⇒ Acceptance test

5. The prompter backstage sees you struggle and feeds you line

⇒ Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Making
trustworthy
software II

Learning objectives:

1. Understand the behavior of
complex recursive programs

2. Formulate software specifications

Specifications
From user stories to formal
specs

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part I
An interactive

debugging demo

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Demo
Debugging a webapp

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

The 2024 CS214 guide to debugging: on one slide

Process

Triage phase
1. Check that there is a problem
2. Reproduce the issue
3. Decide whether it’s your problem
4. Write it up

Diagnosis phase
1. Learn about the system
2. Observe the defect
3. Simplify and minimize to isolate
4. Guess and verify
5. Fix and confirm the fix
6. Prevent regressions

Techniques
- Keep notes
- Change one thing at a time
- Apply the scientific method
- Instrument
- Divide and conquer
- Ask for help

Pitfalls
- Random mutation
- Staring aimlessly
- Wasting time
- Assuming a bug went away
- Fixing effects, not causes
- Losing data

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part II
Specs: From English

to Math

1. User stories
Capture needs and goals of
users

2. Requirements
Say what the user wants

3. Specifications
Say what the program does

4. Formal specifications
Tie it all together with code &
math

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

User stories: Capture what users care about

- Use a few words to
capture the essence of
the project

- User, topic, purpose
structure
→ Who, Where, What

→ See The Software
Entreprise in BA5

Examples:

- “As a business analyst, when visiting the
online dashboard, I want to be able to
retrieve aggregate visitor statistics over
the last day, week, and month”

- “As a passenger, when opening the CFF
timetable, I want to quickly find out which
platform my train departs from”

- “By the end of the testing class, students
should be able to identify, name, and
describe the fives most important kinds of
tests”

- “As a busy home cook, when preparing
dinner, I want to be able to cook chickpeas
in less than 15 minutes.”

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

User stories: Capture what users care about

- Use a few words to
capture the essence of
the project

- User, topic, purpose
structure
→ Who, Where, What

→ See The Software
Entreprise in BA5

Examples:

- “As a business analyst, when visiting the
online dashboard, I want to be able to
retrieve aggregate visitor statistics over
the last day, week, and month”

- “As a passenger, when opening the CFF
timetable, I want to quickly find out
which platform my train departs from”

- “By the end of the testing class, students
should be able to identify, name, and
describe the fives most important kinds of
tests”

- “As a busy home cook, when preparing
dinner, I want to be able to cook
chickpeas in less than 15 minutes.”

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Requirements: Complete description

Examples
- Project proposals
- Statements of work
- Improvement proposals

(PIPs, SIPs, JEPs)
- Product requirement

documents
- Intro of lab writeups!

Functional reqs: concrete,
testable objectives
→ “The find function must return a
boolean indicating whether results were
found”
→ “The simplify function should be
idempotent”

Non-functional reqs:
general properties
→ “Each lab should be fun or useful”
→ “The API should respond quickly”

Exercise: What kinds of requirements do our labs have?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel https://openjdk.org/jeps/459

https://openjdk.org/jeps/459

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel https://docs.scala-lang.org/sips/fewer-braces.html

https://docs.scala-lang.org/sips/fewer-braces.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Specifications: Unambiguous functional reqs

- Only covers functional
requirements

- Can include functionality,
performance, error
handling, availability, …

- Unambiguous

Requirements are for
customers.

Specs are for engineers.

Examples:
- IETF RFCs

- Language specs

- Implementation section of
lab write-ups!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Interlude: Anyone speaks German here?

3.7.4 Zugbildung
Um das ungewollte Freimelden von
Streckenabschnitten durch das Rückstellen
der Achszähler auf Null und dadurch
Zugsgefährdungen zu vermeiden, darf die
effektive Gesamtachszahl eines Zuges
nicht 256 Achsen betragen.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Interlude: Anyone speaks German here?

3.7.4 Formation des trains
In order to avoid falsely signalling a
section of track as clear by resetting
the axle counters to zero, and thus to
avoid endangering trains, the effective
total number of axles of a train must not
equal 256 axles.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Boids UI (partial) requirement:
“A UI will display the evolutions of boids over time at min 30FPS”.

Boid UI (partial) spec, whole application:
“An HTML canvas will be updated by a Javascript
requestAnimationFrame loop that communicates with the server
through fetch() calls to a REST api.”

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel https://www.ietf.org/rfc/rfc793.txt

https://www.ietf.org/rfc/rfc793.txt

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise:
Jass or Belote?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

https://www.ffbelote.org/wp-content/uploads/2015/11/REGLES-DE-LA-BELOTE-COINCHEE.pdf

https://www.ffbelote.org/wp-content/uploads/2015/11/REGLES-DE-LA-BELOTE-COINCHEE.pdf

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel
https://coinche.ch/regles.pdf

https://coinche.ch/regles.pdf

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Problem
English and French are horrible
languages for specifications

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

A small sample of ambiguities

Attachment issues
“Each subscriber to a newspaper based in Morges, VD will be contacted.”

Logical ambiguity
“The system shall permit access to employees who work in Building D and Building E.”

Word ambiguity
“Time flies like an arrow, fruit flies like a banana”

Numbers
“Access will be restricted to users more than 13 years old”

Nested negations
“It is not as if there aren’t technologies at hand today that wouldn’t improve the toasting

experience if thoughtfully incorporated into a new generation of toasting devices.”
Jonah Goldberg, "Whither the Toaster?", NRO 9/10/2012

etc., etc.

https://www.archives.gov/federal-register/write/legal-docs/ambiguity.html

Exercise: rephrase these as logical propositions

https://www.archives.gov/federal-register/write/legal-docs/ambiguity.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

val contact = journals.exist.(user.subd) && user.inMorges
val contact = journals.filter(_.inMorges).exists(user.subd)

“Each subscriber to a newspaper based in Morges, VD will be contacted.”
val access = employee.worksIn(B) && employee.worksIn(D)
val access = employee.worksIn(B) || employee.worksIn(D)

“The system shall permit access to employees who work in Building D and Building E.”
time.fliesLike(arrow)
fruitFlies.enjoy(banana)

“Time flies like an arrow, fruit flies like a banana”
val access = user.age > 13.0
val access = user.age >= 14

“Access will be restricted to users more than 13 years old”
!(!tech.exists(!_.improvesToasting))
equivalent to tech.exists(!_.improvesToasting) (woops!)

“It is not as if there aren’t technologies at hand today that wouldn’t improve the toasting
experience if thoughtfully incorporated into a new generation of toasting devices.”

Jonah Goldberg, "Whither the Toaster?", NRO 9/10/2012

etc., etc.

A small sample of ambiguities

https://www.archives.gov/federal-register/write/legal-docs/ambiguity.html

https://www.archives.gov/federal-register/write/legal-docs/ambiguity.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

- Like a spec, but written in
a restricted,
unambiguous language
→ Math or code
→ Supports formal proofs

Formal specs are for
engineers &
computers.

Formal specs: tying it all together with math & code

Examples:
- Software models

→ Reference implementation

- Axiomatic specs
→ Parametric integration tests
→ Monitors

Two classes at EPFL:
- Formal Verification

(V. Kunčak, IN)
- Interactive theorem proving

(C. Pit-Claudel, EDIC)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Examples of formal specs

- Software model

fastExponentiation(x: Int, n: Int) …
ensuring (res =>
 res == slowExponentiation(x, n))

fastExponentiation(x: Double, n: Int) …
ensuring (res =>
 abs(res - slowExponentiation(x, n)) < ε)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Examples of formal specs

- Axiomatic (monitor)

filter[A](l: List[T], p: T => Boolean) …
ensuring (res =>
 res.forall(p) &&
 res.subsequence(l) &&
 l.forall(t => res.contains(t) || !p(t)))

- Axiomatic (parametric integration test)

def pushPop[T](s: Stack[T], t: T) =
 assert(pop(push(t, s)) == (t, s)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

😰
😊

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Specs at all levels

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Formal specs: tying it all together with math & code

Exercise: Fix the following spec:

def maxIncomplete(l: List[Int]): Int =
{
 requires(!l.isEmpty)
 …
} ensuring (res => l.forall(x => x <=
res))

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Formal specs: tying it all together with math & code

Exercise: Fix the following spec:

def maxIncomplete(l: List[Int]): Int = {
 requires(!l.isEmpty)
 …
} ensuring (res => l.forall(x => x <= res))

Solution:

def maxComplete(l: List[Int]): Int = {
 requires(!l.isEmpty)
 …
} ensuring (res => l.forall(x => x <= res)
 && l.contains(res))

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Formal specs: tying it all together with math & code

Exercise: Fix the following spec:

def sort(l: List[Int]): List[Int] = {
 …
} ensuring (res =>
 (0 to l.length - 2).forall(idx =>
 res(idx) <= res(idx + 1)))

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Formal specs: tying it all together with math & code

Exercise: Fix the following spec:

def sort(l: List[Int]): List[Int] = {
 …
} ensuring (res =>
 (0 to l.length - 2).forall(idx =>
 res(idx) <= res(idx + 1)))

Solution:

def sort(l: List[Int]): List[Int] = {
 …
} ensuring (res =>
 l.length == res.length &&
 (0 to l.length - 2).forall(idx =>
 res(idx) <= res(idx + 1)) &&
 l.forall(x => res.count(_ == x) == l.count(_ == x)))

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap: specs and tests

- User stories capture the who (target audience) and what (needs and
goals)

- Requirements (functional / non-functional) are acceptance criteria
- Specifications restate requirements in detailed language
- Formal specifications capture requirements unambiguously for all

inputs

- Acceptance and system tests validate against requirements
- Integration tests, unit tests, and monitors validate against

specifications

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

If we’re early: fill in the
bref retour indicatif !

